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Coherence for adjunctions in a 3-category via string
diagrams
Manuel Araújo

Departament of Computer Science and Technology, University of Cambridge, United Kingdom

We construct a 3-categorical presentation Adj(3,1) and define a coherent adjunction
in a strict 3-category C as a map Adj(3,1) → C. We use string diagrams to show that
any adjunction in C can be extended to a coherent adjunction in an essentially unique
way. The results and their proofs will apply in the context of Gray 3-categories after
the string diagram calculus is shown to hold in that context in an upcoming paper.

1 Introduction
In this paper, we construct a 3-categorical presentation Adj(3,1) containing 1-cells l and r and we
define a coherent adjunction in a strict 3-category C as a functor Adj(3,1) → C. We then prove our
Main Theorem, stating that any adjunction in C (by which we mean an adjunction in its homotopy
2-category) can be promoted to a coherent adjunction in an essentially unique way.

In order to state this Theorem precisely, denote by θ(1) the computad consisting of a single
1-cell, so that Map(θ(1), C) is the 3-groupoid of 1-morphisms in C, and let MapL(θ(1), C) be its full
3-subgroupoid whose objects are the left adjoint 1-morphisms in C. The map

El : Map(Adj(3,1), C)→ Map(θ(1), C)

given by restriction to the 1-cell l factors through MapL(θ(1), C).
Theorem 1.1 (Main Theorem). Given a strict 3-category C, the restriction map

El : Map(Adj(3,1), C)→ MapL(θ(1), C)

is a weak equivalence of strict 3-groupoids.
The basic idea of the proof is that the map El is a fibration of 3-groupoids, by the main result of

[4]. This allows us to make use of a long exact sequence in homotopy groups to reduce the problem
to showing that the homotopy groups of the fibre are trivial and the map is surjective on objects.
We then prove this is the case by constructing trivialising morphisms for arbitrary elements of
these homotopy groups. We do this one cell at a time, by using the lifting properties of fibrations
and using the string diagram calculus developed in [6], [3], [4] and [5] for explicit constructions.

Remark 1.2. The restriction to strict 3-categories is a consequence of the fact that we use a string
diagram calculus. In an upcoming paper we show that this string diagram calculus holds in Gray
3-categories and then all results in this paper will hold in that setting, with the same proofs.

1.1 Pullbacks and the long exact sequence for a fibration
In the proof of the main Theorem, we need to make use of the long exact sequence in homotopy
groups corresponding to a fibration of n-groupoids. We will also need to use pullbacks of maps
of n-groupoids along a fibration. We therefore state and prove all the necessary results. These
should in principle follow from model theoretic arguments in the folk model structure on strict
n-categories of [14]. We prefer to give different proofs here for completeness and also because we
want proofs that will be applicable in the context of Gray 3-categories and other types of semistrict
n-categories.
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1.2 Relation to other work
We start by defining a 2-categorical presentation Adj(2,1) and proving the corresponding coherence
result for adjunctions in a 2-category. This presentation can be deduced directly from the definition
of an adjunction as a pair of 1-morphisms, together with unit and counit 2-morphisms satisfying
two relations, known as the snake relations, or triangle identities. The coherence result in this case
is essentially equivalent to the well known result that adjoints are unique up to isomorphism.

The essential difference between Adj(3,1) and Adj(2,1) is the appearance of a swallowtail relation,
named after the well known singularity. Singularity theory and adjunctions in higher categories
are related by the Cobordism Hypothesis (see [16]).

The swallowtail relations were fist introduced in the context of adjunctions in [21]. There they
are part of the definition of a locally adjoint biadjoint pair in a strongly bicategory enriched category
(a kind of semistrict 3-category). Note that what is called a biadjoint pair in [21] is what we call
an adjunction in the present paper. In that paper, it is proved that given a biadjoint pair one
can modify the triangle isomorphisms in such a way that two additional relations (later called
swallowtail relations) are satisfied, yielding a locally adjoint biadjoint pair. A string diagram proof
of the analogous result for a strict 3-category has appeared in [3]. There is also a formalized string
diagram proof in the proof assistant Globular (see [7]).

The swallowtail relations also appear in [12], in the more general context of biadjunctions in
tricategories. There they are depicted in terms of pasting diagrams and the complexity of these
diagrams is increased by the presence of various morphisms implementing the weak coherence laws
which hold in a tricategory. In that paper, it is proved that any any biequivalence in a tricategory
extends to a biadjoint biequivalence, satisfying the swallowtail relations. Again, note that what is
called a biequivalence in [12] we call here simply an equivalence. What is called a biadjunction in
[12] we call here an adjunction satisfying the swallowtail relations, i.e. a map Adj(3,1) → C.

In [9] the author gives a definition of a coherent adjoint equivalence between 2-categories. This
is in particular an adjunction in the 3-category of 2-categories, and so the swallowtail relations
appear in the definition. The composite 3-morphisms whose equality is asserted by these relations
are depicted as movies of 2-dimensional string diagrams. This seems to be the first place in the
literature where these equations relating the cusp isomorphisms for an adjunction are given the
name of swallowtail relations, by analogy with the singularity.

In [17] the author proves a coherence result for duals in monoidal bicategories. More precisely,
they prove that the 2-groupoid of objects in a monoidal bicategory which admit a dual is equivalent
to a 2-groupoid of coherent dual pairs, which can be seen as the 2-groupoid of maps out of a certain
computad, which plays the same role as Adj(3,1) in the present paper. We can specialize the result
in [17] to the case of strict monoidal 2-categories. On the other hand, using the fact that monoidal
2-categories are just 3-categories with one object, with duals corresponding to adjoints, we can
also specialize the result in the present paper to the context of strict monoidal 2-categories. The
two results on coherence for duals in strict monoidal 2-categories thus obtained are essentially the
same. The main advantage of the methods in the present paper is that the proof is made much
simpler by the use of string diagrams, a method which we can currently extend to 4-categories.
Moreover, the result in the present paper does not follow from the one in [17], except in the special
case where one considers adjunctions in 3-category with only one object.

In [18] the authors construct an (∞, 2)-category Adj and prove that the space of functors
Adj → Cat∞ is equivalent to the space of adjunctions in Cat∞. Informally, we can think of
Adj(3,1) as a finite presentation for the homotopy 3-category of Adj. This seems to be the first
place in the literature where coherence for adjunctions in a higher category C is stated in terms
of an equivalence of spaces between the space of morphisms in C which admit an adjoint and the
space of maps into C out of a category consisting of a free adjunction. The strictly undulating
squiggles used there are also a kind of string diagram calculus.

1.3 Future work
The use of string diagrams comes with the limitation of applying only to strict 3-categories. How-
ever, we will prove in an upcoming paper that this string diagram calculus is applicable also in
Gray 3-categories and therefore the proofs in [4] and the present paper also hold more generally.
A string diagram calculus for Gray 3-categories with duals already appears in [8].
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The methods used in this paper are also extended to dimension 4 in an upcoming paper, where
we construct a 4-categorical presentation Adj(4,1) and prove an analogous result for adjunctions
in 4-categories. We will then use this result to give a new proof of the coherence result for fully
dualizable objects in a strict symmetric monoidal 3-category in the author’s PhD Thesis [3]. The
cobordism hypothesis allows us to interpret the corresponding presentation as a finite presentation
of the 3-dimensional fully extended framed bordism category, although this would require the
coherence result to be extended to weak symmetric monoidal 3-categories.

2 Definitions and basic results
We now give some necessary definitions and recall the main result from [4] which we will need in
the present paper.

2.1 Strict n-categories
We think of a strict n-category as an algebra over a certain monad

Tn : gSetn → gSetn

on the category of n-globular sets. This is the monad defined in [15], Chapter 8. Alternatively
one can think of a strict n-category as a category enriched in strict (n − 1)-categories with the
cartesian product. Given a strict n-category C, we denote by s, t its source and target maps.

2.2 Equivalences
In a strict n-category, we say that a k-morphism f : x→ y is an isomorphism if there exists another
k-morphism f : y → x such that f ◦ g = idy and g ◦ f = idx. We also say that f is invertible and
we call g its inverse (one can show that it is unique). However, we are more interested in a weaker
version of this, known as equivalence.

Definition 2.1. Let C be a strict n-category. An n-morphism f : x → y in C is an equivalence
if it is an isomorphism. When k < n, a k-morphism f : x→ y in C is an equivalence when there
is another k-morphism g : y → x and equivalences f ◦ g → idy and g ◦ f → idx in C. We say that
x is equivalent to y, and write x ' y, if there is an equivalence x → y. When f : x → y is an
equivalence, we also call it weakly invertible and any morphism g : y → x such that f ◦ g ' idy
and g ◦ f ' idx is called a weak inverse to f . When f is a k-morphism and an equivalence we
also call it a k-equivalence.

Definition 2.2. An n-groupoid is an n-category all of whose morphisms are equivalences.

Finally, we use the following notion of weak equivalence for functors, which coincides with the
one in the folk model structure of [14].

Definition 2.3. A functor F : C → D between strict n-categories is called essentially surjective
if for every object d ∈ D there exists an object c ∈ C and an equivalence F (c)→ d in D. A functor
F : C → D between strict n-categories is called a weak equivalence if it is essentially surjective
and for all objects c1, c2 ∈ C the induced functor C(c1, c2)→ D(F (c1), F (c2)) is a weak equivalence
of (n− 1)-categories.

Definition 2.4. An n-groupoid G is called weakly contractible if the map G → ∗ is a weak
equivalence.

2.3 Adjunctions
Definition 2.5. An adjunction in a strict 2-category C is a pair of 1-morphisms l : X → Y and
r : Y → X together with 2-morphisms u : idX → r ◦ l and c : l ◦ r → idY called the unit and the
counit, which satisfy two standard relations, called zigzag, snake or triangle identities.
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Definition 2.6. Let C be a strict n-category. We define its homotopy 2-category to be the strict
2-category h2(C) obtained by declaring equivalent 2-morphisms to be equal.

The following definitions of adjunctions in n-categories are adapted from the ones given in [16]
for the case of (∞, n)-categories.

Definition 2.7. An adjunction between 1-morphisms in a strict n-category C is a pair of 1-
morphisms l : X → Y and r : Y → X together with 2-morphisms u : idX → r ◦ l and c : l ◦ r → idY
called the unit and the counit, which determine an adjunction in the homotopy 2-category h2(C).

This means that an adjunction in a 3-category consists of a pair of 1-morphisms l : X → Y
and r : Y → X together with unit and counit 2-morphisms satisfying the usual snake relations or
triangle identities up to 3-isomorphism.

Definition 2.8. An adjunction between k-morphisms in a strict n-category C is an adjunction
between 1-morphisms in an appropriate (n− k + 1)-category of morphisms in C.

The following Lemma relating equivalences and adjunctions is well known.

Lemma 2.9. Let C be a strict n-category, f : x→ y a k-equivalence in C, g : y → x a weak inverse
and u : idx → g ◦ f a (k + 1)-equivalence. Then there exists a (k + 1)-equivalence c : f ◦ g → idy
such that (f, g, u, c) is an adjunction in C.

Proof. By passing to h2(Hom(s(x), t(x))) we can reduce to the case where n = 2 and k = 1. Now
we just need to find c : y → x satisfying the two snake relations. This can be done by using string
diagrams, as on the nLab page for adjoint equivalence.

2.4 Presentations
An n-categorical presentation is simply a collection of k-cells for every k ≤ n + 1, whose sources
and targets are composites of lower dimensional cells. We interpret the (n + 1)-cells as relations.
Given an n-categorical presentation P we denote by F (P) the n-category generated by P. Its k-
morphisms are arbitrary composites of the k-cells in P. Two n-morphisms are declared equal when
they are related by an (n+ 1)-cell. We sometimes write P → C to refer to a functor F (P)→ C.

This can be made precise by using the theory of computads. See [20] for a detailed treatment
of computads and [4] for our simplified exposition of how we use them.

We denote by θ(k) the computad generated by a single k-cell, so that functors θ(k) → C are in
canonical bijection with the set of k-morphisms in C.

2.5 String diagrams
In [6] a string diagram calculus for 4-categorical compositions is introduced. The authors introduce
the notion of a signature, which consists of sets of generating k-cells, for each k ≤ 5. They then
define a k-diagram over a signature, be a 4-categorical composite of cells. They also introduce
homotopy generators which are certain cells encoding coherent versions of the interchange laws
that hold in strict 4-categories. Finally they define a signature with homotopy generators as a
signature in which we have specified cells implementing these coherent laws.

In [5] we introduced a monad TD
s

n on globular sets encoding the compositional structure of
n-dimensional string diagrams. Its algebras are called n-sesquicategories and they are n-globular
sets equipped with strictly associative and unital composition and whiskerig operations, but not
satisfying the Godement interchange laws. The notion of a signature then coincides with that of a
computad for TD

s

n .
In an upcoming paper, we will show how one can define a monad T ss3 by adding to TD

s

3 certain
operations encoding the homotopy generators. The T ss3 -algebras are called semistrict 3-categories
and they are defined precisely so that the string diagram calculus from [6] applies. We also show
that they are the same as Gray 3-categories. We are working on extending this to higher dimensions.

In [4] we explain how to interpret diagrams over a 4-signature with homotopy generators as
specifying composites in a strict 4-category, by interpreting the homotopy generators as identity
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morphisms. In the present paper, we will use these string diagrams in the n = 3 case, so we include
below an informal description of these diagrams.

Given a strict 3-category C, we use the string diagram calculus to describe composites of
morphisms in any dimension, and to prove identities between composite 3-morphisms. We read
odd dimensional diagrams from left to right and even dimensional diagrams from top to bottom.
This means the source of an odd dimensional morphism appears on its left and the source of an
even dimensional morphism appears above it.

We denote the composite of two composable 1-morphisms f, g by the labelled diagram

.

Similarly, we can also denote the composite of n composable 1-morphisms by a diagram consisting
of n labeled dots on a line.

Given 2-morphisms α, β such that t(α) = s(β), we can denote their composite by the labeled
diagram

.

If f, g are 1-morphisms such that t(f) = s2(α) and s(g) = t2(α), we can also denote the whiskering
of α with f or g by

or .

In general, a diagram such as

labeled by morphisms in C, subject to compatibility conditions on their sources and targets, deter-
mines a composite 2-morphism in C. We can also consider 2-morphisms whose source and target
are composites of 1-morphisms. Given composable 1-morphisms i, j and f, g we can denote a
2-morphism η : g ◦ f → j ◦ i by

.

These can also be composed and whiskered with other morphisms, so we can form general 2-
diagrams, which when given a compatible labeling by morphisms in C denote composite 2-morphisms.
Here is an example of such a diagram.

.

Accepted in Compositionality on 2022-05-30. Click on the title to verify. 5



Volume 4 Issue 2 ISSN 2631-4444

Now we come to 3-dimensional diagrams. We denote the composite of two 3-morphisms by a
labeling of

.

The whiskering of a 3-morphism with a 2-morphism corresponds to the diagram

or .

The whiskering of a 3-morphism with a 1-morphism corresponds to the diagram

or .

These basic composition operations can be iterated to form 3-diagrams such as

,

which when given compatible labelings by morphisms in C denote composite 3-morphisms. We can
also consider 3-morphisms whose source and target are arbitrary composites of 1 and 2-morphisms
in C, which we denote by labeling a diagram such as

.

We can then compose these to get general 3-diagrams, such as

.

Notice that the two string diagrams

and

determine the same composition operation on 2-morphisms in a strict 3-category, as they both
correspond to the pasting diagram

•   
==�� •

  
==�� • .

So we introduce 3-dimensional cells
...

... ...

...

......

......

...

...

...

...

...

... ...

...

......

......

...

...

...

...
and

...

......

...

... ...

... ...

...

...

...

...

...

......

...

... ...

... ...

...

...

...

...

called interchangers (or type I2 homotopy generators in [6]) which when labeled by compatible
morphisms in C compose to the appropriate identity 3-morphism in C.

Remark 2.10. In a semistrict 3-category the interchangers become isomorphisms instead of iden-
tities.

Then we need to introduce some equations between 3-diagrams. First there is interchanger
cancellation:
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...

... ...

...

......

......

...

...

...

...

...

... ...

...

......

......

...

...

...

...

...

......

...

... ...

... ...

...

...

...

... =

...

... ...

...

......

......

...

...

...

...

...

... ...

...

......

......

...

...

...

... ;

...

... ...

...

......

......

...

...

...

...

...

... ...

...

......

......

...

...

...

...

...

......

...

... ...

... ...

...

...

...

... =

...

... ...

...

......

......

...

...

...

...

...

... ...

...

......

......

...

...

...

...
.

Then we have the type I3 homotopy generator

...

...

...
...

...

...

...

...

...

...

...

...

...
...

...

=

...

...
...

...

...

...

...
...

...

...

...

...
...

...

...

,

and finally we have the type II3 homotopy generators:

...
...

...

...

...

...

...

............

...

...

...

...

...

......... ...

...

...

...

...

...

.........

......

... ..................

= ...

...

...

...

...

...

...

......... ...

...

...

...

...

...

............

...

...

...

...

...

.........

......

............ .........

;

...
...

...

...

...

...

...

... ... ......

...

...

...

...

...

... ... ... ...

...

...

...

...

...

... ... ...

... ...

... ... ...... ... ......

= ...
...

...

...

...

...

...

... ... ... ...

...

...

...

...

...

... ... ......

...

...

...

...

...

... ... ...

... ...

...... ... ... ... ... ...

.

2.6 Functor categories
Using the left and right internal Hom from the monoidal biclosed structure on n-categories as-
sociated to the Crans-Gray tensor product ([11]) one can define n-categories Funlax(C,D) and
Funoplax(C,D) for n-categories C and D. One can check that a k-morphism in Funoplax(C,D) is
a rule that associates to each `-morphism in C a map θ(k);(`) → D, satisfying certain relations of
compatibility with composition. Here θ(k);(`) is the (k+ `)-computad explictly constructed in [13].
It can also be described as the Crans-Gray tensor product θ(k) ⊗ θ(`). Similarly, a k-morphism in
Funlax(C,D) is a rule that associates to each `-morphism in C a map θ(`);(k) → D.

One can then define the n-category Fun(C,D) as the subcategory of Funoplax(C,D) consisting
of those k-morphisms which associate to an `-morphism in C a (k+`)-equivalence in D, for k, ` ≥ 1.
The k-morphisms in Fun(C,D) are called k-transfors. For k = 1, 2, 3 they are also called natural
transformations, modifications and perturbations, respectively (see the nLab page "transfor" for a
discussion of this terminology). Similarly, Fun(C,D) is the analogous subcategory of Funlax(C,D).
Finally Map(C,D) and Map(C,D) are defined as the underlying subgroupoids in Fun(C,D) and
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Fun(C,D). Given a presentation P we write Fun(P,D) instead of Fun(F (P),D) and similarly for
Map.

In [4] we gave an explicit description of Fun(C,D) in terms of string diagrams, when C and D
are 4-categories. We include here, for convenience, the string diagram description of k-transfors
between 3-categories.

2.6.1 Natural transformations

Given functors F,G : C → D, a natural transformation, or 1-transfor, α : F → G consists of the
following data. We use red and blue to denote the images of objects and morphisms under F and
G, respectively.

0. For each object Y ∈ C a 1-morphism αY : F (Y )→ G(Y ):

Y = 7→ αY = ;

1. For each 1-morphism g : X → Y in C an invertible 2-morphism αg in D:

g = 7→ αg = : → ;

2. For each 2-morphism ζ : f → g in C an invertible 3-morphism αζ in D:

ζ = 7→ αζ = : → ;

3. For each 3-morphism t : η → ζ in C a relation αt in D:

t = 7→ : = .

This data is subject to relations equating the values of α on composite morphisms with the
corresponding composites of values of α given by stacking diagrams.

2.6.2 Modifications

Given natural transformations α, β : F → G, a modification, or 2-transfor, m : α → β consists of
the following data. We use green for α and purple for β.

0. For each object Y ∈ C a 2-morphism mY : αY → βY in D:

Y = 7→ mY = : → ;

1. For each 1-morphism g : X → Y in C an invertible 3-morphism mg in D:

g = 7→ mg = : → ;

2. For each 2-morphism ζ = : f → g in C a relation mζ in D:
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: = .

This data is subject to relations equating the values of m on composite morphisms with the
corresponding composites of values of m given by stacking diagrams.

2.6.3 Perturbations

Given modifications l,m : α→ β, a perturbation, or 3-transfor, A : l→ m consists of the following
data. We use orange for l and light blue for m.

0. For each object Y ∈ C a 3-morphism AY : lY → mY in D:

Y = 7→ AY = : → ;

1. For each 1-morphism g = : X → Y in C a relation Ag in D:

: = .

This data is subject to relations equating the values of A on composite morphisms with the
corresponding composites of values of A given by stacking diagrams.

2.7 Fibrations
Definition 2.11. A map of n-groupoids p : E → B is called a fibration if, given any k-morphism
f : x→ y in B and a lift x̃ of its source along p, there exists a lift f̃ : x̃→ ỹ of f along p.

Remark 2.12. Given n-groupoids E and B, it is natural to ask whether a map f : E → B is
a fibration in the sense of this paper if and only if it is is a fibration in the folk model structure
on strict n-categories defined in [14]. This is plausible, since the generating trivial cofibrations in
that model structure are the inclusions of a free k-cell as the source a free fully coherent (k + 1)-
equivalence (jk : Ok → Pk in the notation there). One would therefore have to show that any
morphism in an n-groupoid can be extended to a fully coherent equivalence. We have not tried to
give a proof of this fact.

Note that in [10] the authors construct a model structure on the category of strict n-groupoids.
However, they define a strict n-groupoid as a strict n-category where every k-morphism has a strict
inverse, rather than a weak one. See also [2].

Theorem 2.13 (from [4]). Let C a strict 4-category, P a presentation and Q another presentation,
obtained by adding a finite number of cells to P. Then the restriction map

Map(Q, C)→ Map(P, C)

is a fibration of 4-groupoids.
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Remark 2.14. In [1] it is shown that the category of strict n-categories equipped with the Crans-
Gray tensor product and the folk model structure is a biclosed monoidal model category. This
implies that the internal Hom functors Funlax(−,D) and Funoplax(−,D) send cofibrations to fibra-
tions. From [14] one can deduce that an inclusion of presentations induces a cofibration between
the presented n-categories. Therefore one can deduce that the restriction map on (op)lax functor
categories is a fibration in the folk model structure. Note also that in [1] it is proved that Map(C,D)
is the underlying n-groupoid of Funoplax(C,D). One might then be able to prove that a folk fibra-
tion between lax functor n-categories restricts to a fibration (in our sense) between the underlying
n-groupoids. In this way one might be able to give a different proof of Theorem 2.13 for all n. In
[4] we give an explicit string diagram proof of this Theorem in the case n = 4, which would also
apply in any model of semistrict 4-categories admitting a string diagram calculus.

3 Coherence for adjunctions in a 2-category
We start by proving coherence for adjunctions in a 2-category. This is not a new result, as it
essentially amounts to uniqueness of adjoints in a 2-category. We give the proof only to illustrate
the general method that will be applied to 3-categorical and, in a subsequent paper, 4-categorical
adjunctions.

An adjunction in a 2-category consists of 1-morphisms l : X → Y and r : Y → X together with
unit and counit 2-morphisms satisfying the snake relations. In string diagram notation we can
write l = and r = , where we use to denote X and to denote Y . If we denote
the unit and counit morphisms by

and ,

then the snake relations look like

= and = .

This leads us to make the following definition.

Definition 3.1. The presentation Adj(2,1) consists of

0. 0-cells X = and Y = ;

1. 1-cells l = : X −→ Y and r = : Y −→ X ;

2. 2-cells

u = : =⇒ ;

c = : =⇒ ;

3. Relations

Cl = : = ;

Cr = : = .

Remark 3.2. The 2-category F (Adj(2,1)) is canonically isomorphic to the 2-category Adj defined
in [19].
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Given this definition, we want to prove the following statement.

Proposition 3.3. Given a 2-category C, the restriction map

El : Map(Adj(2,1), C)→ MapL(θ(1), C)

is a weak equivalence of 2-groupoids.

Definition 3.4. Let f : E → B be a fibration of 2-groupoids and b ∈ B an object. The fibre
f−1(b) is the 2-subcategory of E consisting of objects that map to b, 1-morphisms that map to idb
and 2-morphisms that map to Ididb

.

By Theorem 2.13, El is a fibration of 2-groupoids. In the following sections, we will prove that
the fibre of a fibration of n-groupoids is an n-groupoid and that a fibration which is surjective on
objects and has weakly contractible fibres is a weak equivalence. We will also define the homotopy
groups πk(G) of an n-groupoid G and show that G is weakly contractible if and only if πk(G) is
trivial for all k ≤ n.

Definition 3.5. An n-groupoid G is connected if for any objects x, y ∈ G there exists a morphism
x→ y in G. A connected groupoid G is 1-connected if given a 1-morphism f : x→ x in G there
exists a 2-morphism f → idx in G.

Once we have defined homotopy groups it will be obvious that G is connected if and only if
π0(G) is trivial and 1-connected when π0 and π1 are both trivial. In this section, we will show that
El is surjective on objects and that its fibres are 1-connected 1-groupoids, and therefore weakly
contractible.

The following is an explicit description of Map(Adj(2,1), C). An object F in Map(Adj(2,1), C) is
a functor, which consists of a choice of k-morphism F (x) for each k-cell x in Adj(2,1), subject to
source and target compatibilities. Given functors F and G, a 1-morphism α : F → G is a weakly
invertible natural transformation. Using red and blue to denote the images of generating cells
under F and G, respectively, α consists of

0. weakly invertible 1-morphisms

αX = : F (X)→ G(X) and αY = : F (Y )→ G(Y );

1. invertible 2-morphisms

αl = : =⇒ ;

αr = : =⇒ ;

2. relations

αu : = and αc : = .

Finally, given weakly invertible natural transformations α, β : F → G, a 2-morphism α ⇒ β
is an invertible modification. Using green and purple to denote the components of α and β,
respectively, m consists of

0. invertible 2-morphisms
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mX = : =⇒ and mY = : =⇒ ;

1. relations

ml : = and mr : = .

Lemma 3.6. Given a 2-category C, the restriction map

El : Map(Adj(2,1), C)→ MapL(θ(1), C)

is surjective on objects.

Proof. Let F (l) : F (X)→ F (Y ) be a 1-morphism in C which is a left adjoint. We can pick a right
adjoint F (r) to F (l), together with unit and counit 2-morphisms satisfying the snake relations and
this data determines a functor Adj(2,1) → C.

Now we show that the fibres are connected. For this we will need the following Lemmas.

Lemma 3.7. Let C be a 2-category. Given F,G ∈ Map(Adj(2,1), C) with F = G on {X,Y, l} there
exists an equivalence α : F → G in Map({X,Y, l, r}, C), which is the identity on {X,Y, l}.

Proof. We use red to denote the images of cells under F and blue for their images under G. For
the images of cells where F = G we use black. So we denote

F (u) := , F (c) := , G(u) := and G(c) := .

We need an isomorphism αr : F (r)→ G(r), so take

αr := .

Lemma 3.8. Let C be a 2-category. Given F,G ∈ Map(Adj(2,1), C) with F = G on {X,Y, l, r}
there exists an equivalence α : F → G in Map({X,Y, l, r, u}, C), which is the identity on {X,Y, l}.

Proof. We use green to denote the values of α. Since α is the identity on X, Y and l, the relation
αu will be of the form

.

So we define

αr = :=

and then the following is a proof of αu :

.

Lemma 3.9. Let C be a 2-category. Given F,G ∈ Map(Adj(2,1), C) with F = G on {X,Y, l, r, u}
we have F = G.
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Proof. We have the following proof that F (c) = G(c) :

.

Lemma 3.10. Given a 2-category C, the fibres of El : Map(Adj(2,1), C) → MapL(θ(1), C) are
connected.

Proof. Consider F,G ∈ Map(Adj(2,1), C) which agree on X ,Y and l. We want to define an
equivalence

α : F → G

in Map(Adj(2,1), C) which restricts to the identity on X, Y and l. By Lemma 3.7 there exists
an equivalence α : F → G in Map({X,Y, l, r}, C), which is the identity on {X,Y, l}. Since the
restriction map

Map(Adj(2,1), C)→ Map({X,Y, l, r}, C)

is a fibration, one can extend this to an equivalence α : F → F1 in Map(Adj(2,1), C), where F1
agrees with G onX,Y, l, r and α is the identity onX,Y, l. So now it is enough to find an equivalence
F1 → G which is the identity onX,Y, l, where F1 = G on {X,Y, l, r}. So we can repeat this process,
applying the above Lemmas, to get the an equivalence α : F → G in Map({X,Y, l, r, u, c}, C), which
is the identity on {X,Y, l}. Now C is a 2-category and {X,Y, l, r, u, c} is the 2-skeleton of Adj(2,1), so
1-morphisms in Map({X,Y, l, r, u, c}, C) are the same thing as 1-morphisms in Map(Adj(2,1), C).

Now we show that the fibres are 1-connected.

Lemma 3.11. Let C be a 2-category. Given a 1-morphism α : F → F in Map(Adj(2,1), C) such
that α is the identity on {X,Y, l}, we have α = Id.

Proof. Denote αr : F (r)→ F (r) by and consider the relation αu :

.

The following is a proof that αr = Idr :

.

Corollary 3.12. Given a 2-category C, the fibres of El : Map(Adj(2,1), C) → MapL(θ(1), C) are
1-connected.

Proof. This follows directly from the previous Lemma.

Lemma 3.13. Given a 2-category C, the fibres of El : Map(Adj(2,1), C)→ MapL(θ(1), C) are weakly
contractible.

Proof. Since C is a 2-category and θ(1) contains the 0-skeleton of Adj(2,1), the fibres of this map
are 1-groupoids. Therefore, since the fibres are 1-connected, they are weakly contractible.
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4 The homotopy pullback
Given a diagram of n-groupoids

X

F

��

Y
G
// Z,

its pullback X ×Z Y in Catn is just the pullback in gSetn, equipped with an obvious Tn-algebra
structure. We want to show that X ×Z Y is actually an n-groupoid, provided either F or G is a
fibration. One could give a direct proof of this, using the lifting properties of the fibration and
the fact that equivalences can be promoted to adjoint equivalences to construct weak inverses.
However, we prefer to give another proof, using computads and Theorem 2.13, which is more in
tune with the general idea of this paper. Our strategy is to define a homotopy pullback X ×hZ Y ,
which we can show is always an n-groupoid, and then to show that when F or G is a fibration the
natural map

X ×Z Y → X ×hZ Y
is a weak equivalence of n-categories.

Definition 4.1. We define the homotopy pullback of a diagram

X

F
��

Y
G
// Z

of n-groupoids to be the pullback

X ×hZ Y //

��

X × Y

F×G
��

Map(θ(1), Z)
s×t
// Z × Z

in Catn.

Remark 4.2. Given an n-groupoid Z, a k-morphism in Map(θ(`), Z) is the same thing as an
`-morphism in Map(θ(k), Z), since they both correspond to maps θ(`);(k) → Z.

So the set of k-morphisms in the homotopy pullback is the pullback of sets

Hom(θ(k), X ×hZ Y ) //

��

Hom(θ(k), X)×Hom(θ(k), Y )

��

Hom(θ(k),Map(θ(1), Z)) // Hom(θ(k), Z × Z),

which is equal to the pullback of sets

Hom(θ(k), X ×hZ Y ) //

��

Hom(θ(k), X)×Hom(θ(k), Y )

��

Hom(θ(1),Map(θ(k), Z)) // Hom(∂θ(1),Map(θ(k), Z)).

This means that a k-morphism in X ×hZ Y consists of a diagram

θ(k) //

��

X

y� ��

Y // Z.
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Now we show that the homotopy pullback of n-groupoids is an n-groupoid.

Definition 4.3. Let Iso(k,k) be the computad with two parallel m-cells xm and ym for each m < k,
two k-cells l : xk−1 → yk−1 and r : yk−1 → xk−1 and two (k + 1)-cells u : idxk−1 → r ◦ l and
c : l ◦ r → idyk−1 .

Definition 4.4. Let Adj(k+1,k) be the computad obtained from Iso(k,k) by adding two (k+ 2)-cells,
corresponding to the two snake relations.

Lemma 4.5. Let C be an n-category and suppose all (k + 1)-morphisms are weakly invertible in
C. Then a k-morphism in C is weakly invertible if and only if the corresponding map θ(k) → C
extends to Iso(k,k) → C.

Proof. Given a k-morphism l : x → y in C, an extension of the corresponding map θ(k) → C to
Iso(k,k) → C consists of a choice of k-morphism r : y → x in C and (k + 1)-morphisms idx → r ◦ l
and l ◦ r → idy. Since all (k + 1)-morphisms are weakly invertible in C, such choices exist if and
only if l is weakly invertible.

Lemma 4.6. Let X be an n-groupoid and consider F,G ∈ Map(Adj(k+1,k), X) where F (l) = G(l).
Then there exists an equivalence α : F → G in Map(Iso(k,k), X), restricting to the identity on l.

Proof. We need to construct αr, αu and αc in X. By passing to h2(HomX(F (xk−2), F (yk−2)))
we can reduce to the case where n = 2 and k = 1 and apply Lemma 3.10. From this we get αr
as a 2-morphism and αu, αc as identities between 2-morphisms in h2(HomX(F (xk−2), F (yk−2))).
These correspond to the required (k + 1)-morphism αr and the (k + 2)-morphisms αu and αc in
X.

Lemma 4.7. Let X be an n-groupoid, F,G ∈ Map(Adj(k+1,k), X) functors and α : F → G in
Map(θ(k), X) an equivalence. Then α extends to an equivalence F → G in Map(Iso(k,k), X).

Proof. Passing to a HomX(F (xk−2), F (yk−2)) we can reduce to the case where k = 1. Now Adj(2,1)
only has cells of dimension ≤ 3, so extending α only involves constructing composites of dimension
≤ 4 in HomX(F (xk−2), F (yk−2)).

Therefore we can apply Theorem 2.13 to h3(HomX(F (xk−2), F (yk−2))) and lift α starting at
F to get an equivalence F → G1 in Map(Adj(k+1,k), X), where G1(l) = G(l). Now we just need to
find an equivalence G1 → G in Map(Iso(k,k), X) restricting to the identity on l, which we can do
by the previous Lemma.

Proposition 4.8. The homotopy pullback of a diagram of n-groupoids is an n-groupoid.

Proof. Consider a diagram
X

F
��

Y
G
// Z

of n-groupoids. Let k ≤ n and suppose all (k+1)-morphisms are weakly invertible in the homotopy
pullback. Note that this condition vacuously holds for k = n. Let

θ(k) x //

y

��

X

α

y�
F

��

Y
G
// Z

be a k-morphism in the homotopy pullback. We want to show that it is weakly invertible, so we
need to find an extension
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θ(k)

##

x

%%

y

��

Iso(k,k) //

��

X

w�
F

��

Y
G

// Z.

Since X and Y are n-groupoids, Lemma 2.9 tells us we can find extensions of x and y to Adj(k+1,k),
to get a diagram of the form

θ(k)

$$

x

&&

y

!!

Adj(k+1,k)
x //

y

��

X

Y.

The previous Lemma now allows us to extend α : F ◦ x → G ◦ y from Map(θ(k), Z) to
Map(Iso(k,k), Z) as desired.

Proposition 4.9. Given a diagram of n-groupoids

X

F

��

Y
G
// Z,

where F is a fibration, the canonical map

X ×Z Y → X ×hZ Y

is a weak equivalence of n-categories.

Proof. Take a k-morphism
θ(k) x //

y

��

X

α

y�
F

��

Y
G
// Z.

in the homotopy pullback, whose source and target are in the image of the map X×Z Y → X×hZ Y .
This means that α∂θ(k) is the identity natural transformation and so α is simply an equivalence
F (x)→ G(y) in Z. Since F is a fibration, we can find a lift φ in

θ(k) x //

s
��

X

F

��

θ(k+1)

φ

<<

α
// Z.

Now φ is a (k + 1)-morphism x → x̄ such that F (φ) = α : F (x) → G(y), so F (x̄) = G(y) and we
have a k-morphism

θ(k) x̄ //

y

��

X

F

��

Y
G
// Z
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in the pullback X ×Z Y . In order to show that the canonical map is essentially surjective on
k-morphisms, we need to show that this is equivalent to the original k-morphism in the homotopy
pullback. Since X ×hZ Y is an n-groupoid, it’s enough to show that there is a (k + 1)-morphism
between them. So we need to find a natural transformation

θ(k+1) φ
//

idy

��

X

x�
F

��

Y
G

// Z

whose restrictions along θ(k) s // θ(k+1) and θ(k) t // θ(k+1) are

θ(k) x //

y

��

X

α

z�
F

��

θ(k) x̄ //

y

��

X

F

��

Y
G
// Z and Y

G
// Z respectively.

We can extend to the (k + 1)-cell by

F (x)
F (φ)

//

α

��

F (x̄)

id
��

G(y)
id
// G(y).

Lemma 4.10. Consider a weak equivalence of n-categories C → D and suppose that D is an
n-groupoid. Then C is an n-groupoid.

Proof. Consider a k-morphim f : x → y in C and let F (f)−1 : F (y) → F (x) be a weak inverse
for F (f). Since F is a weak equivalence, there exists an f : y → x in C with F (f) ' F (f)−1.
Then F (f ◦ f) ' F (f)−1 ◦ F (f) ' idF (x). Since F is a weak equivalence, this implies f ◦ f ' idx.
Similarly, we have f ◦ f ' idy, so f is weak inverse to f .

Proposition 4.11. Given a diagram of n-groupoids

X

F

��

Y
G
// Z,

where F is a fibration, the pullback X ×Z Y is an n-groupoid.

Proof. This follows from the fact that X×hZ Y is an n-groupoid and the canonical map X×Z Y →
X ×hZ Y is a weak equivalence.

5 The long exact sequence for a fibration
Now we show that a fibration of n-groupoids is a weak equivalence if and only if its fibres are weakly
contractible, by using an analog of the long exact sequence in homotopy groups for a fibration of
spaces.

Lemma 5.1. Let p : E → B be a fibration of n-groupoids. Then, for any 0 ≤ k ≤ n− 1 and any
k-morphisms x, y in E, the induced map

E(x, y)→ B(p(x), p(y))

is a fibration of (n− k − 1)-groupoids.
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Proof. The lifting condition for `-morphisms in B(p(x), p(y)) follows easily from the lifting condi-
tion for (`+ k + 1)-morphisms in B.

Definition 5.2. Given a map of n-groupoids f : A→ B and an object b ∈ B, we define the fibre
f−1(b) of f over b to be the pullback

f−1(b) //

��

A

f

��

θ(0)
b
// B

in Catn.

So a k-morphism in f−1(b) is a k-morphism a ∈ Ak such that f(a) = Id(k)
b (defined inductively

by saying that Id(k)
b is the identity morphism on Id(k−1)

b ).

Lemma 5.3. If p : E → B is a fibration between n-groupoids and b ∈ B is an object, then p−1(b)
is an n-groupoid.

Proof. This follows from Proposition 4.11.

Definition 5.4. Let G be an n-groupoid and x ∈ G an object. Define id(0)
x := x and id(k)

x =
idid(k−1)

x
. Denote by ΩxG the (n− 1)-groupoid Hom(x, x). This comes equipped with a strictly as-

sociative monoidal structure, given by composition in G. Denote ΩkxG := Ωid(k−1)
x

Ωk−1
x G. Finally,

denote by G0 the set of objects of G.

Definition 5.5. Let G be an n-groupoid. We define π0(G) := G0/ ∼, where the equivalence
relation ∼ is equivalence in G. Now let x ∈ G be an object. Define π0(G, x) to be the pointed set
(π0(G), [x]), were [x] denotes the equivalence class of x in π0(G). Finally, for 1 ≤ k ≤ n, define
πk(G, x) := πk−1(ΩxG, idx) with monoid structure induced by composition.

Note that, for k ≥ 1, the monoids πk(G, x) are actually groups and for k ≥ 2 they are abelian,
by an Eckmann-Hilton argument with pasting diagrams. Moreover, given a map of n-groupoids
f : A → B and an object a ∈ A one can also define πk(f, a) : πk(A, a) → πk(B, f(a)), making πk
into a functor on pointed n-groupoids.

Lemma 5.6. Let f : A → B be a map of n-groupoids. Then f is a weak equivalence if and only
if the maps πk(f, a) : πk(A, a)→ πk(B, f(a)) are isomorphisms, for all a ∈ A0 and for all k ≥ 0.

Proof. The proof is by induction on n. Suppose f is a weak equivalence. Then it is essentially
surjective, so it is surjective on π0. Moreover, for any objects x, y ∈ A, the map A(x, y) →
B(f(x), f(y)) is a weak equivalence of (n− 1)-groupoids, so by the induction hypothesis it induces
isomorphisms on all homotopy groups. In particular, it induces isomorphisms πk(A(x, x), idx) →
πk(B(f(x), f(x)), idf(x)), for 0 ≤ k ≤ n− 1. Now

πk(A(x, x), idx) = πk+1(A, x) and πk(B(f(x), f(x)), idf(x)) = πk+1(B, f(x)),

so we conclude that πl(f, x) : πl(A, x)→ πl(B, f(x)) is an isomorphism, for 1 ≤ l ≤ n. So all that
is left to do is to show that π0(f) is injective. So suppose [f(x)] = [f(y)] in π0(B) and pick an
equivalence β : f(x) → f(y) in B. Since A(x, y) → B(f(x), f(y)) is essentially surjective, there
exists α : x→ y and an equivalence f(α)⇒ β. In particular, we have [x] = [y] in π0(A).

Now suppose the maps πk(f, a) : πk(A, a) → πk(B, f(a)) are isomorphisms, for all objects
a ∈ A and for all k ≥ 0. Then f is essentially surjective, being an isomorphism on π0. Now let
x, y ∈ A and consider the map A(x, y)→ B(f(x), f(y)). We need to show that this map is a weak
equivalence of (n − 1)-groupoids, and by the induction hypothesis it is enough to show that the
maps

πk(A(x, y), α)→ πk(B(f(x), f(y)), f(α))
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are isomorphisms, for 0 ≤ k ≤ n−1 and α : x→ y in A. Consider the maps A(x, x)→ A(x, y) and
B(f(x), f(x)) → B(f(x), f(y)) defined by wiskering with α and f(α), respectively. These induce
isomorphisms

πk(A(x, x), idx)→ πk(A(x, y), α)
and

πk(B(f(x), f(x)), idf(x))→ πk(B(f(x), f(y)), f(α))
for 0 ≤ k ≤ n− 1, which fit in a commuting diagram

πk(A(x, y), α) // πk(B(f(x), f(y)), f(α))

πk(A(x, x), idx)
'

OO

' // πk(B(f(x), f(x)), idf(x))

'

OO

πk+1(A, x) ' // πk+1(B, f(x)).

This shows that πk(A(x, y), α)→ πk(B(f(x), f(y)), f(α)) is an isomorphism.

Now we construct the long exact sequence in homotopy groups associated with a fibration of
n-groupoids.

Lemma 5.7. Let p : E → B be a fibration of n-groupoids, x ∈ E an object, b = p(x) ∈ E and let
Fb be the fibre of p over b. Then the induced map ΩxE → ΩbB is a fibration of (n− 1)-groupoids,
whose fibre over idb is ΩxFb.

Proof. The fact that ΩxE → ΩbB is a fibration follows from Lemma 5.1. The fact that the fibre
is ΩxFb follows from unraveling the definitions.

Definition 5.8. Let p : E → B be a fibration of n-groupoids, x ∈ E an object, b = p(x) ∈ E and
let Fb be the fibre of p over b. We define a pointed map ∂ : π0(ΩbB, idb) → π0(Fb, x) sending the
class [α] of a 1-morphism α : b→ b in B to the class [y] where y is the endpoint of a lift of α along
p, starting at x.

Lemma 5.9. The above procedure gives a well defined pointed map

∂ : π0(ΩbB, idb)→ π0(Fb, x).

Proof. Suppose we have 1-morphisms f, g : b → b in B, and a 2-morphism α : f → g, so that
[f ] = [g] in π0(ΩbB, idb). Let f̄ : x → y and ḡ : x → z be lifts of f and g along p. We want to
show that [y] = [z] in Fb, so we need to find a morphism y → z in E that maps to idb. Let f̄−1 be
a weak inverse for f̄ and let f−1 := p(f̄−1). Consider the map ḡ ◦ f̄−1 : y → z. This maps down
to g ◦ f−1. Composing α−1 with a 2-morphism f ◦ f−1 → idb, we get a 2-morphism g ◦ f−1 → idb.
Now we can lift this 2-morphism starting at ḡ ◦ f̄−1 and the target of the resulting 2-morphism is
a 1-morphism y → z which maps to idb under p.

Lemma 5.10. Let p : E → B be a fibration of n-groupoids and Fb its fibre over b ∈ B. Then the
map πk(B, b) ∂ // πk−1(Fb, x) is a group homomorphism for k ≥ 2.

Proof. It is enough to show that π0(Ω2
bB, Ididb

) ∂ // π0(ΩxFb, idx) is a group homomorphism.
This follows from the fact that

b

idb

����
GG

idb

��

//b = b

idb

  

idb

>>�� b

idb

  

idb

>>�� b.
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Proposition 5.11. Let p : E → B be a fibration, x ∈ E an object, set b := p(x) and let Fb be the
fibre of f over b. Then the following is an exact sequence of groups and pointed sets

· · · // π1(E, x) // π1(B, b) ∂ // π0(Fb, x) // π0(E, x) // π0(B, b) .

Proof. It is enough to show that

π0(ΩxE, idx) // π0(ΩbB, idb)
∂ // π0(Fb, x) // π0(E, x) // π0(B, b)

is exact. This in turn is easy to check directly.

Corollary 5.12. A fibration of n-groupoids f : A → B is a weak equivalence if and only if for
every object b ∈ B the fibre f−1(b) is weakly contractible.

6 Coherence for adjunctions in a 3-category
We now define the presentation Adj(3,1) consisting of coherence data for an adjunction between
1-morphisms in a 3-category and prove our Main Theorem, which we restate here for convenience.

Theorem 6.1. Given a strict 3-category C, the restriction map

El : Map(Adj(3,1), C)→ MapL(θ(1), C)

is a weak equivalence of strict 3-groupoids.

Definition 6.2. The presentation Adj(3,1) consists of

0. objects X = and Y = ;

1. 1-cells l= : X //
Yoo : = r;

2. 2-cells

u = : +3 ;

c = : +3 ;

3. 3-cells

Cl = : *4
jt : = C−1

l ;

Cr = : *4
jt : = C−1

r ;
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4. relations

: = Id(2)
l ;

: = ;

: = Id(2)
r ;

: = ;

: = .

An adjunction in a 3-category is a pair of 1-morphisms, together with unit and counit 2-
morphisms satisfying the snake relations up to isomorphism. By picking inverse pairs of 3-
morphisms - which are usually called cusp 3-morphisms - implementing these snake relations
and then considering the relations implied in witnessing that these are in fact inverse pairs of
3-morphisms, one obtains all of the cells in the above presentation, except for the final one. This is
the well known swallowtail relation. In [21] and [12] the definitions of coherent adjunction include
two swallowtail relations, but in [17] the author shows that one follows from the other. We will
give a string diagram proof of this fact.

Theorem 6.1 will be a consequence of the following Lemma.

Lemma 6.3. Given a 3-category C, the map

Map(Adj(3,1), C)→ Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C)

induced by the square

Map(Adj(3,1), C)

��

El // MapL(θ(1), C)

��

Map(Adj(3,1),h2 C)
El

// MapL(θ(1),h2 C)

is a weak equivalence.

First we explain how Theorem 6.1 follows from this Lemma. We need one more standard
definition and a another standard Lemma.

Definition 6.4. A map of n-groupoids f : X → Y is a trivial fibration if it is both a fibration
and a weak equivalence.

Lemma 6.5. Consider a pullback
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X ×B Y //

��

Y

g

��

X
f

// B,

where f is a trivial fibration. Then π2 : X ×B Y → Y is a trivial fibration.

Proof. The map π2 is a fibration, because a lifting problem for π2 reduces to a lifting problem for
f , which is a fibration. The map π2 is essentially surjective (on objects) because f is essentially
surjective. Finally, π−1

2 (y) = f−1(g(y)) is weakly contractible, because f is a fibration and a weak
equivalence.

Proof of Theorem 6.1. Note that the bottom map in the square from Lemma 6.3 is the same as

Map(Adj(2,1),h2 C)→ MapL(θ(1),h2 C)

which is a fibration by Theorem 2.13 and a weak equivalence of 2-groupoids by Proposition 3.3.
Therefore, applying Lemma 6.5, the map

π2 : Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C)→ MapL(θ(1), C)

is a trivial fibration of 3-groupoids. By Lemma 6.3, the composite Map(Adj(3,1), C)→ MapL(θ(1), C)
is a weak equivalence.

So we need to prove Lemma 6.3, which is to say we need to show that the map

Map(Adj(3,1), C)→ Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C)

is a weak equivalence of 3-groupoids. Since this map is a fibration, it is enough to show that it is
surjective on objects and has weakly contractible fibres.

6.1 Surjective on objects
We show that the map

Map(Adj(3,1), C)→ Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C)

is surjective on objects.

Definition 6.6. We define Adj(3,1) to be the presentation obtained from Adj(3,1) by removing the
swallowtail relation.

Lemma 6.7. Let C be a 3-category and consider a functor

F : Adj(3,1) → C.

Then there exists a functor F : Adj(3,1) → C which agrees with F on all cells in Adj(3,1) except for
Cl and C−1

l .

Proof. We use the same notation for the image of a cell under F as for the cell itself. We define

F (Cl) =
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and

F (C−1
l ) = .

These are clearly inverse to each other and the following is a proof that the swallowtail relation
holds with this choice of cusps:

.

Lemma 6.8. The map

Map(Adj(3,1), C)→ Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C)

is surjective on objects.

Proof. Given a map F : Adj(3,1) → h2 C we must lift it to Adj(3,1) → C. From F : Adj(3,1) → h2 C
we can build a map F : Adj(3,1) → C whose image in Map(Adj(3,1),h2 C) is F , so we can apply the
previous Lemma.

6.2 Additional swallowtail relations
Denote by (SW) the swallowtail relation in Adj(3,1). We show that there are three additional
swallowtail relations (SW), (SW2) and (SW2) which hold in F (Adj(3,1)). We will therefore use
all four relations freely in the rest of the paper. The relation (SW2) is usually included in the
definition of a coherent adjunction. The fact that it follows from (SW) is originally due to [17], in
the context of duals in monoidal bicategories. We present here a new string diagram proof. The
sources of the relations (SW) and (SW2) are inverse to those of (SW) and (SW2), so they follow
trivially.

Definition 6.9. We define Adj+(3,1) to be the presentation obtained from Adj(3,1) by adding the
relations
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(SW) : = ;

(SW2) : = ;

(SW2) : = .

Proposition 6.10. We have F (Adj+(3,1)) = F (Adj(3,1)).

Proof. We have to show that the extra relations are already satisfied in F (Adj(3,1)). The source
of SW is inverse to the source of the swallowtail relation in Adj(3,1), so it follows. We have the
following proof for SW2:

.

Finally, the source of SW2 is inverse to the source of SW2.
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6.3 Fibres are connected
Now we prove that the fibres are connected. Given F,G ∈ Map(Adj(3,1), C) with the same image
under the map

Map(Adj(3,1), C)→ Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C),

we need to find an equivalence α : F → G in Map(Adj(3,1), C) that maps to the identity. Equiva-
lently, given F,G ∈ Map(Adj(3,1), C) with F = G on the 2-skeleton of Adj(3,1), we need to find an
equivalence α : F → G in Map(Adj(3,1), C) which is the identity on the 1-skeleton of Adj(3,1).

We use red and blue for the images of cells under functors F and G, respectively. When F and
G agree on a cell, we use black. We use green for the values of α.

Lemma 6.11. Let C be a 3-category. Given F,G ∈ Map(Adj(3,1), C) with F = G on sk2(Adj(3,1))
there exists an equivalence α : F → G in

Map(sk2(Adj(3,1)) ∪ {Cl}, C)

which is the identity on sk1(Adj(3,1)) ∪ {u}.

Proof. We need to construct αc = and show that the relation αCl
is satisfied:

.

We define

αc :=

and then we have the following proof of αCl
:

.

Lemma 6.12. Let C be a 3-category. Given F,G ∈ Map(Adj(3,1), C) with F = G on sk2(Adj(3,1))∪
{Cl}, we have F = G.

Accepted in Compositionality on 2022-05-30. Click on the title to verify. 25



Volume 4 Issue 2 ISSN 2631-4444

Proof. First we have F (C−1
l ) = G(C−1

l ) because both are both inverse to F (Cl) = G(Cl). Then
we have F (Cr) = G(Cr) by

.

Finally, this implies F (C−1
r ) = G(C−1

r ).

Lemma 6.13. Let C be a 3-category. The fibres of

Map(Adj(3,1), C)→ Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C)

are connected.

Proof. Given F,G ∈ Map(Adj(3,1), C) with F = G on {X,Y, l, r, u, c}, we need to find an equiva-
lence

α : F → G

in Map(Adj(3,1), C) which is the identity on {X,Y, l, r}. By Lemma 6.11, there exists an equivalence

α : F → G

in Map({X,Y, l, r, u, c, Cl}, C), which is the identity on {X,Y, l, r, u}. We can lift this to an equiv-
alence F → F1 in Map(Adj(3,1), C). Then F1 = G on {X,Y, l, r, u, c, Cl}, so F1 = G.

6.4 Fibres are 1-connected
Now we prove that the fibres are 1-connected. Given F ∈ Map(Adj(3,1), C) and an equivalence
α : F → F which is the identity on the 1-skeleton, we need to find a 2-equivalence m : α → Id in
Map(Adj(3,1), C) which is the identity on {X,Y, l}. We use green and orange for the values of α
and m, respectively.

Lemma 6.14. Let C be a 3-category. Given a 1-morphism α : F → F in Map(Adj(3,1), C) such that
α is the identity on sk1(Adj(3,1)), there exists a 2-morphism m : α → IdF in Map(sk1(Adj(3,1)) ∪
{u}, C) which is the identity on {X,Y, l}.

Proof. Denote αu : F (u)→ F (u) by

.

We want to define a 3-morphism mr : Idr → Idr, which we denote by , such that the relation

mu : =

is satisfied. Define

mr :=
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and then the following is a proof of mu :

.

Lemma 6.15. Let C be a 3-category. Given a 1-morphism α : F → F in Map(Adj(3,1), C) such
that α is the identity on sk1(Adj(3,1)) ∪ {u}, we have α = Id.

Proof. Denote αc : F (c)→ F (c) by

and consider the relation αC−1
l

:

.

The following is a proof that αc = Idc :

.
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Lemma 6.16. Let C be a 3-category. The fibres of

Map(Adj(3,1), C)→ Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C)

are 1-connected.

Proof. Consider F ∈ Map(Adj(3,1), C) and an equivalence α : F → F which is the identity on
{X,Y, l, r}. By Lemma 6.14, there exists a 2-morphism m : α → IdF in Map({X,Y, l, r, u}, C)
which is the identity on {X,Y, l}. We extend this to an equivalence α → α1 in Map(Adj(3,1), C)
with α1 = Id on {X,Y, l, r, u}. Then, by Lemma 6.15, we have α1 = Id, so we have an equivalence
α→ Id which is the identity on {X,Y, l}.

6.5 Fibres are 2-connected
Now we prove that the fibres of

Map(Adj(3,1), C)→ Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C)

are 2-connected.

Lemma 6.17. Let C be a 3-category. Given a 2-morphism m : IdF → IdF in Map(Adj(3,1), C)
such that m is the identity on {X,Y, l}, we have m = Id.

Proof. Denote

mr :=

and consider the relation mc :

.

We have the following proof that mr = Id(2)
r :

.

Lemma 6.18. Let C be a 3-category. The fibres of

Map(Adj(3,1), C)→ Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C)

are 2-connected.

Accepted in Compositionality on 2022-05-30. Click on the title to verify. 28



Volume 4 Issue 2 ISSN 2631-4444

Proof. This follows from the previous Lemma.

Lemma 6.19. Let C be a 3-category. The fibres of

Map(Adj(3,1), C)→ Map(Adj(3,1),h2 C)×MapL(θ(1),h2 C) MapL(θ(1), C)

are weakly contractible.

Proof. Since morphisms in the fibres have to restrict to the identity on the 0-skeleton of Adj(3,1),
the fibres are 2-groupoids. Since we have shown they are 2-connected, they are therefore weakly
contractible.

This concludes the proof of Lemma 6.3 and therefore of Theorem 6.1.
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